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Figure 10.1: The local coordinates used to describe a circularly polarized wave: In cartesian
and polar coordinates.
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10.1 Spin Angular Momentum and Cylindrical Vector
Beam

In this section, we will study the spin angular momentum of a circularly polarized (CP) wave.

It is to be noted that in cylindrical coordinates, as shown in Figure 10.1, x̂ = ρ̂ cosφ− φ̂ sinφ,
ŷ = ρ̂ sinφ+ φ̂ cosφ, then a CP field is proportional to

(x̂± jŷ) = ρ̂e±jφ ± jφ̂e±jφ = e±jφ(ρ̂± φ̂) (10.1.1)

Therefore, the ρ̂ and φ̂ of a CP is also an azimuthal traveling wave in the φ̂ direction in
addition to being a traveling wave e−jβz in the ẑ direction. This is obviated by writing

e−jφ = e−jkφρφ (10.1.2)

where kφ = 1/ρ is the azimuthal wave number, and ρφ is the arc length traversed by the
azimuthal wave. Notice that the wavenumber kφ is dependent on ρ: the larger the ρ, the
larger the azimuthal wavelength.

Thus, the wave possesses angular momentum called the spin angular momentum (SAM),
just as a traveling wave e−jβz possesses linear angular momentum in the ẑ direction.

In optics research, the generation of cylindrical vector beam is in vogue. Figure 10.2 shows
a method to generate such a beam. A CP light passes through a radial analyzer that will only
allow the radial component of (10.1.1) to be transmitted. Then a spiral phase element (SPE)
compensates for the exp(±jφ) phase shift in the azimuthal direction. Finally, the light is a
cylindrical vector beam which is radially polarized without spin angular momentum. Such
a beam has been found to have nice focussing property, and hence, has aroused researchers’
interest in the optics community [73].
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Figure 10.2: Courtesy of Zhan, Q. (2009). Cylindrical vector beams: from mathematical
concepts to applications.Advances in Optics and Photonics,1(1), 1-57.

10.2 Complex Poynting’s Theorem and Lossless Condi-
tions

10.2.1 Complex Poynting’s Theorem

It has been previously shown that the vector E(r, t) ×H(r, t) has a dimension of watts/m2

which is that of power density. Therefore, it is associated with the direction of power flow
[31, 42]. As has been shown for time-harmonic field, a time average of this vector can be
defined as

〈E(r, t)×H(r, t)〉 = lim
T→∞

1

T

T̂

0

E(r, t)×H(r, t) dt. (10.2.1)

Given the phasors of time harmonic fields E(r, t) and H(r, t), namely, E(r, ω) and H(r, ω)
respectively, we can show that

〈E(r, t)×H(r, t)〉 =
1

2
<e{E(r, ω)×H∗(r, ω)}. (10.2.2)

Here, the vector E(r, ω) × H∗(r, ω), as previously discussed, is also known as the complex
Poynting vector. Moreover, because of its aforementioned property, and its dimension of
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power density, we will study its conservative property. To do so, we take its divergence and
use the appropriate vector identity to obtain1

∇ · (E×H∗) = H∗ · ∇ ×E−E · ∇ ×H∗. (10.2.3)

Next, using Maxwell’s equations for ∇×E and ∇×H∗, namely

∇×E = −jωB (10.2.4)

∇×H∗ = −jωD∗ + J∗ (10.2.5)

and the constitutive relations for anisotropic media that

B = µ ·H, D∗ = ε∗ ·E∗ (10.2.6)

we have

∇ · (E×H∗) = −jωH∗ ·B + jωE ·D∗ −E · J∗ (10.2.7)

= −jωH∗ · µ ·H + jωE · ε∗ ·E∗ −E · J∗. (10.2.8)

The above is also known as the complex Poynting’s theorem. It can also be written in an
integral form using Gauss’ divergence theorem, namely,

ˆ
S

dS · (E×H∗) = −jω
ˆ

V

dV (H∗ · µ ·H−E · ε∗ ·E∗)−
ˆ

V

dVE · J∗. (10.2.9)

where S is the surface bounding the volume V .

10.2.2 Lossless Conditions

For a region V that is lossless and source-free, J = 0. There should be no net time-averaged
power-flow out of or into this region V . Therefore,

<e
ˆ

S

dS · (E×H∗) = 0, (10.2.10)

Because of energy conservation, the real part of the right-hand side of (10.2.8), without the
E · J∗ term, must be zero. In other words, the right-hand side of (10.2.8) should be purely
imaginary. Thus

ˆ

V

dV (H∗ · µ ·H−E · ε∗ ·E∗) (10.2.11)

must be a real quantity.
Other than the possibility that the above is zero, the general requirement for (10.2.11) to

be real for arbitrary E and H, is that H∗ · µ ·H and E · ε∗ · E∗ are real quantities. Notice

1We will drop the argument r, ω for the phasors in our discussion next as they will be implied.
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that they are also scalar numbers. But since the conjugate transpose of a real scalar number
is itself, we have, if

H∗ · µ ·H
is real, then

(H∗ · µ ·H)† = H∗ · µ ·H
where † implies conjugate transpose. The above, in detail, using the rule of matrix algebra

that (A ·B ·C)t = C
t ·Bt ·At

, implies that2

(H∗ · µ ·H)† = (H · µ∗ ·H∗)t = H∗ · µ† ·H = H∗ · µ ·H. (10.2.12)

The last equality in the above is possible only if µ = µ† or that µ is hermitian. Therefore,
the conditions for anisotropic media to be lossless are

µ = µ†, ε = ε†, (10.2.13)

requiring the permittivity and permeability tensors to be hermitian. If this is the case,
(10.2.11) is always real for arbitraty E and H, and (10.2.10) is true, implying a lossless
region V . Notice that for an isotropic medium, this lossless conditions reduce simply to that
=m(µ) = 0 and =m(ε) = 0, or that µ and ε are pure real quantities. Hence, many of the
effective permittivities or dielectric constants that we have derived using the Drude-Lorentz-
Sommerfeld model cannot be lossless when the friction term is involved.

If a medium is source-free, but lossy, then <e
´
dS · (E×H∗) < 0. In other words, time-

average power must flow inward to the volume V . Consequently, from (10.2.9) without the
source term J, this implies

=m
ˆ

V

dV (H∗ · µ ·H−E · ε∗ ·E∗) < 0. (10.2.14)

But the above, using that =m(Z) = 1/(2j)(Z − Z∗), is the same as

−j
ˆ

V

dV [H∗ · (µ† − µ) ·H + E∗ · (ε† − ε) ·E] > 0. (10.2.15)

Therefore, for a medium to be lossy, −j(µ† −µ) and −j(ε† − ε) must be hermitian, positive
definite matrices, to ensure the inequality in (10.2.15). Similarly, for an active medium,
−j(µ† − µ) and −j(ε† − ε) must be hermitian, negative definite matrices.

For a lossy medium which is conductive, we may define J = σ · E where σ is a general
conductivity tensor. In this case, equation (10.2.9), after combining the last two terms, may
be written asˆ

S

dS · (E×H∗) = −jω
ˆ

V

dV

[
H∗ · µ ·H−E ·

(
ε∗ +

jσ∗

ω

)
·E∗

]
(10.2.16)

= −jω
ˆ
dV [H∗ · µ ·H−E · ε̃∗ ·E∗], (10.2.17)

2In physics notation, the transpose of a vector is implied in a dot product.
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where ε̃ = ε − jσ
ω which, in general, is the complex permittivity tensor. In this manner,

(10.2.17) has the same structure as the source-free Poynting’s theorem. Notice here that the
complex permittivity tensor ε̃ is clearly non-hermitian corresponding to a lossy medium.

For a lossless medium without the source term, by taking the imaginary part of (10.2.9),
we arrive at

=m
ˆ

S

dS · (E×H∗) = −ω
ˆ

V

dV (H∗ · µ ·H−E · ε∗ ·E∗), (10.2.18)

The left-hand side of the above is the reactive power coming out of the volume V , and hence,
the right-hand side can be interpreted as reactive power as well. It is to be noted that
H∗ ·µ ·H and E · ε∗ ·E∗ are not to be interpreted as stored energy density when the medium
is dispersive. The correct expressions for stored energy density will be derived in the next
section.

But, the quantity H∗ ·µ ·H for lossless, dispersionless media is associated with the time-
averaged energy density stored in the magnetic field, while the quantity E ·ε∗ ·E∗ for lossless
dispersionless media is associated with the time-averaged energy density stored in the electric
field. Then, for lossless, dispersionless, source-free media, then the right-hand side of the
above can be interpreted as stored energy density. Hence, the reactive power is proportional
to the time rate of change of the difference of the time-averaged energy stored in the magnetic
field and the electric field.

10.3 Energy Density in Dispersive Media

A dispersive medium alters our concept of what energy density is.3 To this end, we assume
that the field has complex ω dependence in ejωt, where ω = ω′ − jω′′, rather than real ω de-
pendence. We take the divergence of the complex power for fields with such time dependence,
and let ejωt be attached to the field. So E(t) and H(t) are complex field but not exactly like
phasors since they are not truly time harmonic. In other words, we let

E(r, t) = E˜(r, ω)ejωt, H(r, t) = H˜ (r, ω)ejωt (10.3.1)

The above, just like phasors, can be made to satisfy Maxwell’s equations where the time
derivative becomes jω. We can study the quantity E(r, t) ×H∗(r, t) which has the unit of
power density. In the real ω case, their time dependence will exactly cancel each other and
this quantity becomes complex power again, but not in the complex ω case. Hence,

∇ · [E(t)×H∗(t)] = H∗(t) · ∇ ×E(t)−E(t) · ∇ ×H∗(t)

= −H∗(t) · jωµH(t) + E(t) · jω∗ε∗E∗ (10.3.2)

where Maxwell’s equations have been used to substitute for ∇ × E(t) and ∇ ×H∗(t). The
space dependence of the field is implied, and we assure a source-free medium so that J = 0.

3The derivation here is inspired by H.A. Haus, Electromagnetic Noise and Quantum Optical Measurements
[74]. Generalization to anisotropic media is given by W.C. Chew, Lectures on Theory of Microwave and Optical
Waveguides [75].



Spin Angular Momentum, Complex Poynting’s Theorem, Lossless Condition, Energy Density99

If E(t) ∼ ejωt, then, due to ω being complex, now H∗(t) ∼ e−jω
∗t, and the term like

E(t)×H∗(t) is not truly time independent,

E(t)×H∗(t) ∼ ej(ω−ω
∗)t = e2ω′′t (10.3.3)

And each of the term above will have similar time dependence. Writing (10.3.2) more explic-
itly, by letting ω = ω′ − jω′′, we have

∇ · [E(t)×H∗(t)] = −j(ω′ − jω′′)µ(ω)|H(t)|2 + j(ω′ + jω′′)ε∗(ω)|E(t)|2 (10.3.4)

Assuming that ω′′ � ω′, or that the field is quasi-time-harmonic, we can let, after using
Taylor series approximation, that

µ(ω′ − jω′′) ∼= µ(ω′)− jω′′ ∂µ(ω′)

∂ω′
, ε(ω′ − jω′′) ∼= ε(ω′)− jω′′ ∂ε(ω

′)

∂ω′
(10.3.5)

Using (10.3.5) in (10.3.4), and collecting terms of the same order, and ignoring (ω′′)2 terms,
gives

∇ · [E(t)×H∗(t)] ∼=− jω′µ(ω′)|H(t)|2 + jω′ε∗(ω′)|E(t)|2

− ω′′µ(ω′)|H(t)|2 − ω′ω′′ ∂µ
∂ω′
|H(t)|2

− ω′′ε∗(ω′)|E(t)|2 − ω′ω′′ ∂ε
∗

∂ω′
|E(t)|2 (10.3.6)

The above can be rewritten as

∇ · [E(t)×H∗(t)] ∼= −jω′
[
µ(ω′)|H(t)|2 − ε∗(ω′)|E(t)|2

]
− ω′′

[
∂ω′µ(ω′)

∂ω′
|H(t)|2 +

∂ω′ε∗(ω′)

∂ω′
|E(t)|2

]
(10.3.7)

The above approximation is extremely good when ω′′ � ω′. For a lossless medium, ε(ω′) and
µ(ω′) are purely real, and the first term of the right-hand side is purely imaginary while the
second term is purely real. In the limit when ω′′ → 0, when we take half the imaginary part
of the above equation, we have

∇ · 1

2
=m [E×H∗] = −ω′

[
1

2
µ|H|2 − 1

2
ε|E|2

]
(10.3.8)

which has the physical interpretation of reactive power as has been previously discussed.
When we take half the real part of (10.3.7), we obtain

∇ · 1

2
<e[E×H∗] = −ω

′′

2

[
∂ω′µ

∂ω′
|H|2 +

∂ω′ε

∂ω′
|E|2

]
(10.3.9)

Since the right-hand side has time dependence of e2ω′′t, it can be written as

∇ · 1

2
<e[E×H∗] = − ∂

∂t

1

4

[
∂ω′µ

∂ω′
|H|2 +

∂ω′ε

∂ω′
|E|2

]
= − ∂

∂t
〈WT 〉 (10.3.10)
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Therefore, the time-average stored energy density can be identified as

〈WT 〉 =
1

4

[
∂ω′µ

∂ω′
|H|2 +

∂ω′ε

∂ω′
|E|2

]
(10.3.11)

For a non-dispersive medium, the above reduces to

〈WT 〉 =
1

4

[
µ|H|2 + ε|E|2

]
(10.3.12)

which is what we have derived before. In the above analysis, we have used a quasi-time-
harmonic signal with exp(jωt) dependence. In the limit when ω′′ → 0, this signal reverts
back to a time-harmonic signal, and to our usual interpretation of complex power. However,
by assuming the frequency ω to have a small imaginary part ω′′, it forces the stored energy
to grow very slightly, and hence, power has to be supplied to maintain the growth of this
stored energy. By so doing, it allows us to identify the expression for energy density for a
dispersive medium. These expressions for energy density were not discovered until 1960 by
Brillouin [76], as energy density times group velocity should be power flow. More discussion
on this topic can be found in Jackson [42].

It is to be noted that if the same analysis is used to study the energy storage in a capacitor
or an inductor, the energy storage formulas have to be accordingly modified if the capacitor
or inductor is frequency dependent.
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